REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188

The public reporting burden for this collection of information is estimated to average 1hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
Technical Report -

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Distributed Reinforcement Learning for PolicySynchronization WOI11INF-11-1-0124

in Infinite-Horizon Dec-POMDPs 5b. GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER
611102

6. AUTHORS 5d. PROJECT NUMBER

Bikramjit Banerjee, Landon Kraemer
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT

University of Southern Mississippi NUMBER

2609 West 4th Street

Bond Hall Room 214

Hattiesburg, MS 39406 -5157
9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S)
ADDRESS(ES) ARO

U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT

P.O. Box 12211 NUMBER(S)

Research Triangle Park, NC 27709-2211 57785-NS.6

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT

In many multi-agent tasks, agents face uncertainty about the environment, the outcomes
of their actions, and the behaviors of other agents. Dec-POMDPs offer a

powerful modeling framework for sequential, cooperative, multiagent tasks under
uncertainty. Solution techniques for infinite-horizon Dec-POMDPs have assumed

prior knowledge of the model and have required centralized solvers. We propose

15. SUBJECT TERMS

Dec-POMDPs, reinforcement learning, multi-agent learning

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER |19a. NAME OF RESPONSIBLE PERSON

a. REPORT |b. ABSTRACT |c. THIS PAGE ABSTRACT OF PAGES Bikramiit Banerjee

uu uu uu uu 19b. TELEPHONE NUMBER
601-266-6287

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

Report Title
Distributed Reinforcement Learning for PolicySynchronization in Infinite-Horizon Dec-POMDPs

ABSTRACT

In many multi-agent tasks, agents face uncertainty about the environment, the outcomes
of their actions, and the behaviors of other agents. Dec-POMDPs offer a

powerful modeling framework for sequential, cooperative, multiagent tasks under
uncertainty. Solution techniques for infinite-horizon Dec-POMDPs have assumed
prior knowledge of the model and have required centralized solvers. We propose
a method for learning Dec-POMDP solutions in a distributed fashion. We identify
the issue of policy synchronization that distributed learners face and propose
incorporating rewards into their learned model representations to ameliorate it.
Most importantly, we show that even if rewards are not visible to agents during
policy execution, exploiting the information contained in reward signals during
learning is still beneficial.

Distributed Reinforcement Learning for Policy
Synchronization in Infinite-Horizon Dec-POMDPs

Anonymous Author(s)
Affiliation
Address
enmai |

Abstract

In many multi-agent tasks, agents face uncertainty abewttiironment, the out-
comes of their actions, and the behaviors of other agents:A@EMDPs offer a
powerful modeling framework for sequential, cooperativeltiagent tasks under
uncertainty. Solution techniques for infinite-horizon EROMDPSs have assumed
prior knowledge of the model and have required centralizdeess. We propose

a method folearning Dec-POMDP solutions in a distributed fashion. We iden-
tify the issue ofpolicy synchronizatiorthat distributed learners face and propose
incorporating rewards into their learned model repredems to ameliorate it.
Most importantly, we show that even if rewards are not vesitd agents during
policy execution, exploiting the information containedréward signals during
learning is still beneficial.

1 Introduction

In many multi-agent tasks, agents face uncertainty abaetivironment, the outcomes of their
actions, and the behaviors of other agents. Dec-POMDPsafiewerful modeling framework for
sequential, cooperative, multiagent tasks under unceytai

State-of-the art infinite-horizon Dec-POMDP solution teicjues such as Pajarinen and Petonen’s
PERI [1] and Amato and Zilberstein's Goal-directed apphoE] rely on knowledge of model
parameters and centralized solvers; however, in some igoersaich knowledge may not be avail-
able and using centralized solvers may be unfeasible. Tétenvajority of Dec-POMDP solution
techniques (for both finite and infinite horizons) have eitiedied on such prior knowledge of the
environment or have utilized centralized solvers.

Recently, some algorithms have been proposed for distiblgarning policies for finite-horizon
Dec-POMDPs. Zhang and Lesser [3] proposed a scalablebdittd, model-free method for a
special class of Dec-POMDP where agents are organized ilmere and Banerjee and Kraemer
[4] proposed a distributed, model-free method for the galfeon-networked) case of finite-horizon
Dec-POMDPs; however, both of these methods rely on an leguaiQ-value function that grows
exponentially in the horizon length. Thus, such methodsictbe applied to learning in infinite-
horizon Dec-POMDPs.

Learning algorithms for infinite-horizon POMDPs (which aessentally single-agent Dec-
POMDPs) have long existed. In this work, we leverage theeliistinction Memory algorithm
(UDM) [5], which was developed to solve infinite-horizon PO/, to solve infinite-horizon Dec-
POMDPs. UDM is a model-based learning algorithm, in that alldent attempts tkearnits own
POMDP model and find the best policy for that model.

Our work with this algorithm (which we call "UDM-AIt"), hasavealed an interesting issue that we
believe can arise not only in UDM-AIt but other such disttgialgorithms for learning infinite Dec-

POMDP policies. We discuss the difficulty distributed infiahorizon learners have with what we
call policy synchronizatiotin Section 6.1, and discuss how reward information can berparated
to ameliorate this problem.

The rewards agents receive from the environment can caigndisant amount of information. To
our knowledge, previously Dec-POMDP policy representetioave not exploited this; however, the
argument can be made that rewards are more of a concepttiakfeaxisting to define the problem
and provide an evaluation criteria for policies. Howevewards must be made available while the
agents are learning otherwise the policy they learn is nmggass. With this in mind, we create a
variant of UDM-AIt that only requires rewards during thereiag phase (i.e. it requires no rewards
during policy execution), and we show that this algorithnsapable of finding better policies that
UDM-AIt (which incorporates no reward information).

2 Decentralized POMDPs

The Decentralized POMDP (Dec-POMDP) formalism extend$®&IDP formalism to accommo-
date multiple agents. We can define a Dec-POMDP as a tupl¢ A, P, R, 2, O), where:

n is the number of agents playing the game.
S is a finite set of (unobservable) environment states.

e A= x;A;isasetof joint actions, wherg; is the set of individual actions that ageérdan
perform.

e P(s'|s,a) gives the probability of transitioning to state€ S when joint actionz € A is
taken in state € S.

e R(s,d) gives the immediate reward the agents receive upon exgautiioni € A in state
seSs.

o () = x;0; is the set of joint observations, whetg is the finite set of individual observa-
tions that agent can receive from the environment.

e P(d|¢, @) gives the probability of the agents jointly observidgs () if the current state is
s’ € S and the previous joint action wasc A.

In Dec-POMDPs, it is generally assumed that agents canmotmemicate their observations and

actions to each other. These constraints are often prasessliworld scenarios, where communi-

cation may be expensive or unreliable. Consider, for irtgaa scenario in which a team of robots
must coordinate to search a disaster area for survivorsudh a task, robots may need to spread
out to efficiently cover the area and also may need to travep dederneath rubble, both of which

could interfere with wireless communication.

Assuming agents cannot communicate observations anchacéach agent must choose actions
based only upon his own actions and observations; howeweg the transition, reward, and ob-
servation functions depend ¢oint actions, the quality of each agent’s policy is dependenthen t
policies played by all agents or th@int policy. The goal of the Dec-POMDP problem, then, is to
find the joint policy that maximizes the expected reward irexkby the agents. The problem of
finding this optimal joint policy has been proven to be NEXd?aplete [6].

3 Alternating Best-Response for Dec-POMDPs

In [7], Nair et. al present the JESP algorithm for solvingtérorizon Dec-POMDPs in which
a centralized solver, with complete knowledge of the Ded/B® model, finds a joint policy by
alternatelycomputingeach agent’s best response policy to the policies of ther aitpents. More
recently, Kraemer and Banerjee [4] proposed Q-Alt, aniadtttng method for solving finite-horizon
Dec-POMDPs that requires no knowledge of the underlyingP@&s1DP model.

Algorithm 1 gives an abstract definition of these alterrabiast-response solution methodsepre-
sents the current joint policy, with the policy for a givereaty denoted as;. The variablefinished
represents some termination condition. In JESR;jshed is true whenr stops changing, while in
Q-Alt finished is true after a set number of alternations. The funcifiond Best Response(i,)

Algorithm 1 SOLVEALTERNATELY

1. 7 < initialize Policies()

2: while not finished do

3: fori=1tondo

4: m; < findBestResponse(i,)
5

6

end for
: end while

returns agent’s best response policy to the current policies of the othgenss, which iomputed
in JESP butearnedin Q-Alt.

In Q-Alt, findBestResponse(i,) involves learning Q-Values [8] of the for@(h,,a|r \ m;)
whereh, is an individual action-observation history of lengtlanda € A;. It is not assumed,
however, that ageritknows \ 7;, so these Q-Values can be written@&:,, a). Essentially, agent
1 is treating the other agents as part of the environment addgairning a policy for a finite-horizon
POMDP (i.e. a single-agent Dec-POMDP) with stochastic rda:aUnfortunately, for a given agent
i, there can b& (| 4;|*|€2;]") individual action-observation histories, and, thereféearning these
Q-Values is intractable for infinite-horizon Dec-POMDPs.

Thus, in order to use this alternate learning approach fanfamte-horizon Dec-POMDP, we re-
quire a method for learning policies for infinite-horizon MDPs. In this work, we propose a new
algorithm based upon 1 in which agents use McCallum’s UDMi@lgm [5] for learning policies

(i.e. UDM is used forfindBest Response(i,)). We refer to the resulting algorithm as UDM-AIt.

4 Utile Distinction Memory for Dec-POMDPs

In [9], Chrisman proposed a method for learning POMDP pe#idh which a learning agent con-
structs its own model and then uses replicated Q-Learnifigda policy. The agent’s local model
is essentially a POMDP model, having a selafal statesS, a transition model over the classes
P(s'|s,a), and an observation modél(w|s’, a), wheres, s’ € S are local statesy € Q is an
observation, and € A is an action. Note that local states are not necessarilyaime @s the un-
derlying Dec-POMDP model states. A given local stateay be a probability distribution over
the true model states as well as the set of policies the otf@rtaould be following. Also, note
that in Chrisman’s work, the observation distribution wasdd only upon the state (i.e. the action
was irrelevant); however, in order to address problems imfitrmation-gathering actions such as
DecTiger, we include the previous action in the observatimalel.

As the agent interacts with the environment, it maintaibelgef distributionb, € AS, whereb,(s)
indicates the agent’s belief that it is in local statat stept. During policy execution where the
agent only has the series of actions it has executed andvaltisais it has seen up to a given step
t, the agent’s belief is given by tHerward probability o from the Baum-Welch forward-backward
procedure [10].

ai(s') = Pwa, ... wi, 80 =8 |ar,...,a;_1)
=2 Plw]s', ai-1) 3o yc g u—1(5)P(s']s, a1-1) @)

wherez is a normalizing factor. However, once an agent has exeaged 7" steps forl” > t it is
able to improveh, (s) by considering how well its experience afteis explained bys; = s. This
probability is known as thbackwardprobability 5, in Baum-Welch and is given by

Bi(s) = P(Wig1s---s---Wr|St = 8, Qp41,.--,07-1)
=22 s Bir1(s)P(wegr|s’,ar) P(s']s, ay). @)

Along with the model parameters, the agent also maintainsval@e function@ : S x A — R,
whereQ(s, a) gives an estimation of the expected reward attained by éxecactiona in states. At
atime steq, the agent selects which action to execute accordingmax,c 4) | g 0:(5)Q(s, a).

Since, the agent has only a probability distribution ovetest, it cannot always identify a single
Q(s,a) to update at a given step as is possible in Q-Learning for MDRstead, it must update
Q(s,a) forall s € S since it may have had a small probability of being in any stAfeer executing
an action at stepand receiving reward, the agent maintains its Q-Values using

Vs € 5,Q(s,a1) = Q(s,a0) + 0by(s) |7 +ymax Y bra(s)Q(s',a)) @®)

s’eS
where) is the learning rate, angis a discount factor.

Chrisman’s algorithm consists of a series of trials withreai@l having two main stages. In the first
stage, the agent interacts with the environmenffsteps, updating its Q-Values as it goes along. In
the second main stage of a trial, the agent updates its aiterodel. In this second stage, the agent
first updates its model parameters using the Baum-Welchritign For each stepin the history,
there is an associated actiap observationv,, and reward-.;. At the end of a trial, an agent
updates its model using the following. Let

§i(s,8") = 2z¢, - ou(s)P(8]s, ar) Pwiya]s’, ar) Brra (s7) (4)
wherez, is a normalizing constant that ensupey ., &:(s, ') = 1.

T
Va € A,Vs,s' € S,P(s'|s,a) = zp(s,a) - Zlat—aftss) (5)
t=1

T
Va € A,Vw € Q,Vs' € S, P(w|s’,a) = z0(s, a) Zl(at =a,wi1 = W) th(s,s/) (6)
t=1 s
wherel (event) returns 1 ifevent occurred and O if it did not occur and wherg(s, a) andzp (s', a)
are normalizing constants which ensure that,. ¢ P(s'|s,a) = 1 and}_ ., P(w|s’;a) = 1,
respectively. Baum-Welch will continue to iteratively wgtd the model parameters until the model
converges.

The agent’s local states may alias many of the states of tieeutnderlying model, and it may be
the case that the agent needs to execute different actidhgse different underlying states. To ad-
dress this, after Baum-Welch has completed the agent aseammake nevperceptual distinctions
While Chrisman’s perceptual distinction criterion was lzhselely upon expected frequencies in
model of transitions and observations, in [5], McCallumtéasl considered the utility of making
a perceptual distinction as the criterion. This method isvikm as the "Utile Distinction Memory”
(UDM) approach, and it differs from Chrisman’s only in theg@eptual distinction criterion.

5 Informed Policy

Note that step 1 of Algorithm 1 requires thabe initialized. Since the agents learn in an alternating
fashion, all agents that have not yet learned a policy wiichan initial policy to play. As noted

in [4] initializing these policies in anformedmanner can produce better results. The informed
policy presented used in those works is incompatible withite-horizon Dec-POMDPs, so we
present a way to repurpose UDM for learning an informedabhitiolicy for infinite-horizon Dec-
POMDPs. We make the assumption that agents can share thkiraion mechanisms beforehand,
as was done in [4], and therefore, while each agent maintsrevn model while learning the
initial policy, every agent learns the same model. Rathan titernate learning, the agents update
and follow their policies concurrently.

First, each agent creates a UDM model witk= s1, so, . .. s, Wherek = | A|, i.e. one state for each
possiblejoint action. Each agent also creates a stgteshich is unreachable from every state, i.e.
Ya € A,Vs € S, P(syl|s,a) = 0. by is initialized such that is always the start state. Lef denote
the state associated with actianc A. For all joint actionsu € A and for all states, s’ € S, if

s’ = s,,thenP(s'|s,a) = 1, otherwiseP(s'|s,a) = 0. In other words, the only way to reach state
s, Is viajoint actiona. Conceptually, each state in the model, including thoserttey be added
by UDM, represents a joint action-only history; howeveraation-only history of length’, 1, can
still bring our agents to a statewhich represents,, ¢ > ¢’ so long as the last steps ofh; match

the lastt’ steps ofi;. The benefit in using UDM as opposed to the method proposet is {hat we
do not have to learn directly a Q-Value for each action-ornggdny i; and actiona (which would
be intractable for large) but rather we can learn a Q-Values only for portions of mistbat are
significant.

6 Exploiting Rewards

6.1 Addressing Desynchronization

In this section, we discuss a particular miscoordinatisnasthat can arise in execution of infinite-
horizon Dec-POMDP policies using an example from the DegeiTdomain defined in [7]. In the
Dec-Tiger domain, there are two doors. Behind one door &stre, but behind the other door is a
tiger. Opening the door concealing the treasure yields angvand opening the door concealing the
tiger yields a penalty. The two agents do not know a prioriclildoor the tiger is behind; however,
they are allowed to listen for clues. Upon listening, eacknagither hears the tiger behind the left
door or the right door. The observations are noisy, howenma, each agent has a fifteen percent
chance of hearing the tiger behind the wrong door. Miscatibin is heavily penalized. If an agent
opens a door and the other agent does not open the same daewamy received will be halved,
and likewise any penalty received will be doubled.

Figure 1 depicts the execution of a joint policy that we olssdrin our experiments with UDM-AIt.
In this policy, an agent opens a dabrif it has received at least two observations since the last ti
it opened a door (or since it began an episode), and the nushtidear Not D” observations it has
observed is greater than the "Helaf' observations it has observed. In this policy, when an agent
opens a door, it (erroneously) assumes that the other agerati$p opened the door. This is similar
to known optimal finite-horizon DecTiger policies; however those policies, an agent will only
decide to open a door at specific steps (this is a key distimatinich we will revisit shortly). In
Figure 1, the rows correspond to execution steps. The cauafreled: and Tiger report the step
number and location of the tiger, respectively. For a giiep§ a; is the action agent executes
at that step and; represents the agent’s belleéforeexecuting that action. The column labeted
reports the observation agenteceived after executing the action in the previous step.

We can see from the table that both agents listen for the Viststeps. After the first two steps,
agent 2 has heard the tiger twice behind the left door anceietbre 97% certain that the tiger is
behind the left door, so it chooses to open the right door. nAde however, received conflicting
observations and therefore has no idea which door the 8deghind. At step 4, Agent 1 is unaware
that that Agent 2 has opened a door and therefore it does ot Kmt the observation received
carries no information, nor does it know that the state has beset. Agent 2 knows both of these
things, and adjusts its belief state accordingly. Aftes {int, the agents become unsynchronized,
and without being able to discern when the other agent haseoleedoor, it does not seem likely that
they can become synchronized again. As mentioned preyiahs! optimal finite-horizon policies
for DecTiger avoid this issue because agents only open @vohe last step for horizons 3-5 and at
the third and last steps for horizon 6.

These synchronization points seem to be the key for solvifigite-horizon DecTiger, and in
fact, PERI [1], the algorithm which produced the policy withe highest known value (13.45)
for infinite-horizon DecTiger exploited this. PERI assuntiest tasks are periodic, and therefore
can easily create a controller that resets evErgteps as is required in DecTiger. Indeed, we can
show formally that simply looping the optimal horizon-3 Déger policy has the same expected
value as was achieved with PERI. The value for the horizom®Bypwhen the discount factor is
0.9 is the discounted sum of the expected value at eachustep—2 - (0.9)° + —2 - (0.9)* +
9.190812 - (0.9)% = 3.6439. Playing this periodic policy repeatedly will yield an exped value of

V = 0(0.99° + v(0.9%)! + v(0.9%)2 + Since this is an infinite geometric series, we can find
the sum using—z = 13.45.

6.2 Incorporating Reward Information

As mentioned previously, if an agent could observe whenatsmterpart has opened a door, this
desynchronization issue could be avoided. Unfortunatelg, generally assumed that agents are

unable to observe the actions performed by other agentsctnif alternating learning, a learning
agent, having no knowledge of the behavior of the other agesaits the other agents as part of the
environment. This means that a givél{s’|s,a) or P(wl|s’,a) an agent has estimated is actually
marginalized over the possible actions of the other agéntas follows.

P(s'|s,a)= Y P(s'|s,a,a_)P(a_|s) @)
a_€A_

P(wls',a) Z P(wla,a—)P(a—_|s) (8)
_eA

So, this ambiguity can affect not only policy execution ag-igure 1 but also model and policy
learning.

Now, UDM (and consequently our alternating UDM algorithralieés on the fact that agent(s) re-
ceive a reward upon executing an action (or joint action) pdé»eling upon the domain, a given
rewardr can carry a significant amount of information.

In the DecTiger problem, for instance, agents receive angwé-2 when they both listen, and
various other rewards if at least one of them opens a doorefdre, if an agent listens and receives
a reward that is not -2, it can be certain that the other agegried a door.

Along with disambiguating the other agent’s actions, rel@an also carry information about the
previous state. For instance, whenever agents open thectaloor in DecTiger, they receive a
positive reward of either 9 if only one agent opened the ddateathe other listened, or 20 if both
agents opened the door. So, if an agent performs the actiparfD” for some doorD and receives
either 9 or 20, it can know with certainty that the previowetvas "NotD”. Of course, since the
state resets upon opening a door, this is of little value fecger policy execution; however, it
could greatly improve the accuracy of thés, s’) (equation 4) used to update the agent’s internal
model. Thatis, rewards can help the agent learn a betterlifazder. Furthermore, in other domains
it may be the case that knowing a state with certainty coulddvesficial during execution as well.

An agent can incorporate reward information into its UDM raldaly conditioning the transition and
observation probabilities on(i.e. P(s'|s, a,r) andP(w|s’, a,)) and by maintaining a new estima-
tor P(r|s,a). The resulting changes to the model leads us to the followiadified representations
of o andg (originally defined in equations 1 and 2).

ay(s') = P(wi,ry .. wi, e, 8¢ =8 |ag, ... ai_1)

= 2o} P(wyls’,ai—1,11) ZSES af_1(8)P(s']s,ap—1,7m¢)P(r|s, ai—1) 9)

Bi(s) = P(Wet1,Tt41, 50 - WD, TT St = 8, Q4415+ -+, Q1)
= 25, - P(regals, ae) 2oy e g Biyr (8") Plwigals’, ad) P(s']s, ae, Te41) (10)
Using this new representation afand 3, the agent can proceed through trials as before, updating
P(s'|s,a,r) and P(w|s’, a,r) in @ manner similar to 5 and 6 with the modified indicatb(s; =

a,r =rey1) andl(a; = a, w1 = w,re1q = 1), respectively. The estimatdt(r|s’, a) is updated
using

T
P(r|s,a) = z - Z Z I(a; = a,r = r41)& (s, 8). (12)
t=1s'eS

We refer to UDM-AIt with using these modifications as UDM-/Rt".

It should be noted that agents using UDM-AIt=Ruill still treat other agents as part of the environ-
ment. In fact,P(s’|s a,r)andP(w|s’, a, r) are still marginalized oved _ as follows.

(s'|s,a,r) Z P(s'|s,a,m,a_)P(r|s,a,a_)P(a_|s,a) (12)
a_€A_

P(w|s',a,r) = Z P(wl|a,r,a_)P(r|s,a,a_)P(a_|s,a) (13)
a_€A_

However, the extra reward information allows an agent teeisslly marginalize over subsets 4f
instead of the entire set becau’ér|s, a, a_) can be zero if a certain reward is impossible given the
states in the underlying model represented by local statela, anda_.

Figure 2 gives an example of a policy discovered by UDM-Aft-R Each node is labeled
by an action, and the transition edges are labeled with onmare vectors having the form
(reward, observation). An asterisk in the place of a reward or observation, dertbisany sym-
bol can match that element, an represents all rewards other than -2. The policy is executed
as follows. The agent executes the action in the top-most,nad then it receives a reward and
observation. It then follows the transition from that nodattmatches the reward-observation it
has received. Note that this policynst periodic. That is, agents will not automatically reset thei
policy execution after X number of steps. Instead, the agenly reset their policy execution when
they receive a reward indicating that a door was open. Thedierpolicy mentioned previously
essentially forces the agents to discard everything theg learned about the location of the tiger
after three steps. In the policy we present in Figure 2, tlemesgonly discard their belief about the
tiger when they are sure it is no longer valid. Thus, thisgolias a slight advantage and achieves
a value of 14.11 (greater than the previously established5}3but this is not entirely surprising
considering that this policy assumes that extra infornmaiScavailable (i.e. the reward).

1 Left - - L L <.50,.50> | <.50,.50>

2 Left | HL | HL L L <.85,.15> | <.85,.15>

8 Left | HR | HL L | OR | <.50,.50> | <.97,.03>

4 Left | HL | HL | L L | <.85,.15> | <.50, .50>

5 Left | HL | HL | OR | L <.97,.03> | <.85,.15>

6 |Right]HLHL] L |OR| <50,.50> | <97,.08> Figure 2: A policy extracted from UDM-AIt for

_ . DecTiger that incorporates rewards. Nodes are la-
Figure 1: An example of agents becoming unsyn-peled with actions and transition edges are labeled
chronized. Each row represents a step of execuwjith reward-observation vectoks r,w >. If the
tion, a; represents the action executed at that stepreward-observation vector received by an agent in
w; represents the observation the agergceived g given node, matches the transition labeling an

after executingy; in the previous step, arid rep- edge transitioning from that node, the agent fol-
resents agernits belief prior to executing;. lows that transition.

6.3 Removing Reliance on Rewards

In some scenarios, it may not be reasonable to assume thatdré@formation is available during
policy execution. Indeed, reward may only exist as a contegefine the problem and to provide
an evaluation criteria for policies. If this is the case, tHeM-Alt-R ™ will not be usable. However,
UDM-AIt requires rewards during the learning phase, andetuee if we can use UDM-AIt for
learning then we have access to rewards during the learhiaggp To this end, we have developed a
variant of UDM-AIt that uses rewards during the learningghbhut does not require rewards during
policy execution. We accomplish this by simply marginalgiover the rewards when propagating
beliefs during policy execution. In other words, we use UBKHR ™ during model learning, but
we generate our beliefs during policy execution using

bi(s) =a)(s)=2z- ZP(wt|5’, ag—1,7) Za;’_l(s)P(s’\s, ar—1,7)P(rls,a;_1)
r s€S

In essence, when an agent marginalizes over rewards, itkéigna guess about the reward it re-
ceived based upon prior experience. Unfortunately, suetigtions will not give the agent much

insight into the current state; however, it may allow it todebthe behaviors of the other agents
more effectively.

We refer to this variant of UDM-AIt which marginalizes ovewards as UDM-Alt-R .

7 Experiments

We evaluated our three UDM-Alt variants (UDM-Alt, UDM-AR", and UDM-AIt-R™) for five
different benchmark problems. For all runs, we initializeds per Section 5 using 20 trials having
50 episodes each with each episode consisting of 200 stepgakEh benchmark problem, we ran
each variant of UDM-AIt 50 times (with a different random desach time). For each run, we
allowed the agents to learn for two alternations (i.e. eagntahad two turns learning) with each
alternation consisting of 50 trials each having 50 episedeh with each episode having 500 steps.
The learning raté was .005, and we used epsilon-greedy exploration [8] with.2. This discount
factor~ was .9 for all benchmark problems. For each run, we evaluateduality of the resulting
policy by simulating for 100000 episodes of 150 steps andamirg the reward attained during
those episodes.

Our results are reported in table 1. For each benchmarkgmrghle report the best known policy
value (which were reported in [11, 1], and the method whithia¢d it. For each of our UDM-AIt
variants, we report the solution quality averaged over 58 rand, in parentheses, the error relative
to the best known value..

Problem(]S], [A], [€]) |Best Known (Method) UDM-AIt-R™ (¢,) [UDM-AIt-R ~ (¢,-) [UDM-AIt (e,
BroadcastChannéb, 2, 2) 9.10 (NLP) 9.10 (0) 9.10 (0) 9.10 (0)
DecTiger(2, 3, 2) 13.45 (PERI) 13.24 (0.02) 5.77 (1.43) | -18.843 (2.4)
Recycling(4, 3, 2) 31.93 (Mealy NLP) 21.90 (.31) 21.91 (0.31) 21.53 (0.33)
2x2 Grid (16,5, 2) 6.89 (PERI) 3.59 (.49) 3.60 (0.48) 3.80 (.45)
Box Pushing100,4,5) | 149.85 (Goal-Dir.) 18.01 (0.88) 8.58 (0.94) -5.03 (1.03)

Table 1: Results Table

From the table we can see that all variants of UDM-AIt perf@xaeeptionally well on the Broad-
castChannel problem. This is not surprising, however, bee8roadcastChannel is relatively easier
than the other problems. Incorporating rewards was oblyicedpful in DecTiger as the relative
error is only .02 for UDM-AIt-R". While UDM-AIt-R~ does not fare as well for DecTiger, it clearly
performs better than UDM-AIlt. This suggests that incorfingarewards into the learning process
can be beneficial, even if rewards are not available duritigypexecution. All three variants per-
form reasonably well on the Recycling Robots; however, ipocating reward appears to have no
effect on the result. Similarly, in the Meeting on a 2x2 Griolglem, reward appears to have no
effect on the result.

All three variants of UDM-AIt show remarkably poor perfornee on the Box Pushing problem
(though the two variants incorporating reward performhdligbetter). Such poor performance is
likely due to the fact that, while agents can coordinate teerlarge box together for a larger reward,
they have the option of pushing smaller boxes individuallyd smaller reward, which can lead to a
local optima. We think resolving this issue may be a good agdar future work.

8 Conclusion

We have proposed three algorithms for solving infinite-bamiDec-POMDPs in a distributed man-
ner without knowledge of the model, and we have evaluateduhéty of the solutions they produce
on five benchmark problems. We have discussed the dangetistidtbuted learners face of becom-
ing unsynchronized during Dec-POMDP policy execution, hade discussed how incorporating
reward information into our learning algorithm can help rBtgesynchronize policies and can im-
prove the quality of the learned model. We have shown engliyithat incorporating rewards into
our models during the learning process can improve thetiegulalues of policies learned, even if
those policies are not allowed to incorporate rewards.

References

[1] Joni Pajarinen and Jaakko Peltonen. Periodic FiniteeStantrollers for Efficient POMDP and
DEC-POMDP Planning. IProceedings of the 25th Annual Conference on Neural Inftona
Processing Systems (NIR®pges 2636—2644, December 2011.

[2] Christopher Amato and Shlomo Zilberstein. Achievingafgpoin decentralized POMDPS. In
Proceedings of the Eighth International Conference on Aatoous Agents and Multiagent
Systemspages 593-600, Budapest, Hungary, 2009.

[3] C. Zhang and V. Lesser. Coordinated multi-agent reicganent learning in networked dis-
tributed POMDPs. IProc. AAAI-11 San Francisco, CA, 2011.

[4] Landon Kraemer and Bikramjit Banerjee. Informed iripalicies for learning in dec-pomdps.
In Proceedings of the Twenty-Sixth AAAI Conference on Adifiictelligence Student Abstract
and Poster ProgramToronto, Canada, July 2012. To appear.

[5] Andrew Kachites McCallum.Reinforcement Learning with Selective Perception and &tidd
State PhD thesis, Department of Computer Science, Universifgaithester, 1995.

[6] Daniel S. Bernstein, Robert Givan, Neil Immerman, antb8io Zilberstein. The complexity
of decentralized control of markov decision procesdé@athematics of Operations Research
27:819-840, 2002.

[7] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsellaming decentralized pomdps:
Towards efficient policy computation for multiagent seggn In Proceedings of the 18th In-
ternational Joint Conference on Artificial Intelligence @AI-03) pages 705711, Acapulco,
Mexico, 2003.

[8] Richard S. Sutton and Andrew G. BartBeinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning)yhe MIT Press, March 1998.

[9] Lonnie Chrisman. Reinforcement learning with percaptliasing: The perceptual distinc-
tions approach. IrProceedings of the Tenth National Conference on Articia¢lligence
pages 183-188, San Jose, CA, 1992. AAAI Press.

[10] Lawrence R. Rabiner. A tutorial on hidden markov modeld selected applications in speech
recognition. InProceedings of the IEEBpages 257-286, 1989.

[11] C. Amato, D.S. Bernstein, and S. Zilberstein. Optimizimemory-bounded controllers for
decentralized POMDPs. Rroc. UAI, 2007.

